Evolution of the Wasserstein distance between the marginals of two Markov processes
نویسندگان
چکیده
In this paper, we are interested in the time derivative of the Wasserstein distance between the marginals of two Markov processes. As recalled in the introduction, the Kantorovich duality leads to a natural candidate for this derivative. Up to the sign, it is the sum of the integrals with respect to each of the two marginals of the corresponding generator applied to the corresponding Kantorovich potential. For pure jump processes with bounded intensity of jumps, we prove that the evolution of the Wasserstein distance is actually given by this candidate. In dimension one, we show that this remains true for Piecewise Deterministic Markov Processes. We apply the formula to estimate the exponential decrease rate of the Wasserstein distance between the marginals of two birth and death processes with the same generator in terms of the Wasserstein curvature.
منابع مشابه
A Distance for HMMs Based on Aggregated Wasserstein Metric and State Registration
We propose a framework, named Aggregated Wasserstein, for computing a dissimilarity measure or distance between two Hidden Markov Models with state conditional distributions being Gaussian. For such HMMs, the marginal distribution at any time position follows a Gaussian mixture distribution, a fact exploited to softly match, aka register, the states in two HMMs. We refer to such HMMs as Gaussia...
متن کاملAlgorithms for Computing Limit distributions of Oscillating Systems with Finite Capacity
We address the batch arrival systems with finite capacity under partial batch acceptance strategy where service times or rates oscillate between two forms according to the evolution of the number of customers in the system. Applying the theory of Markov regenerative processes and resorting to Markov chain embedding, we present a new algorithm for computing limit distributions of the number cus...
متن کاملRelative Entropy Rate between a Markov Chain and Its Corresponding Hidden Markov Chain
In this paper we study the relative entropy rate between a homogeneous Markov chain and a hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the relative entropy between two finite subsequences of above mentioned chains with the help of the definition of...
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملPerturbation theory for Markov chains via Wasserstein distance
Perturbation theory for Markov chains addresses the question of how small differences in the transition probabilities of Markov chains are reflected in differences between their distributions. We prove powerful and flexible bounds on the distance of the nth step distributions of two Markov chains when one of them satisfies a Wasserstein ergodicity condition. Our work is motivated by the recent ...
متن کامل